Application and Code Considerations for Specifying Generator Set Fuel Sources

PowerHour webinar series for consulting engineers
Experts you trust. Excellence you count on.

February 18, 2021 11:00 PST / 14:00 EST
(1PDH issued by Cummins)
Welcome!

Cummins PowerHour webinar series is designed to help our engineer partners to…

- Keep up to date on products, technology, and codes and standards development
- Interact with Cummins experts and gain access to ongoing technical support
- Participate at your convenience, live or on-demand
- Earn Professional Development Hours (PDH)

Technical tips:

- Audio is available through teleconference or Zoom application.
- Attendees are in “listen only” mode throughout the event.
- Use the Zoom Q&A Panel to submit questions, comments, and feedback throughout the event. Time is allotted at the end of the PowerHour to address Q&A.
- If the audio connection is lost, disconnected or experiences intermittent connectivity issues, please check your audio connection through the "Join Audio" or "Audio Connectivity" button at the bottom left of the Zoom application.
- Report technical issues using the Zoom Q&A Panel.
Meet Your Panelists

Cummins Presenter & Panelists

Mark Taylor
Technical Marketing Specialist
Cummins Inc.

Scott Thomas
Director - Sales Application Engineering
Cummins Inc.

Earnest Glaser
Senior Sales Application Engineer
Cummins Inc.

Michael Sanford
Product Strategy and Sales Enablement Leader
Cummins Inc.

Your local Cummins contacts:

- AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com)
- CO, MT, ND, UT, WY: Christopher Scott (christopher.l.scott@cummins.com)
- CA, WA, OR, AK, HI: Brian Pumphrey (brian.pumphrey@cummins.com)
- MA, ME, NH, RI, VT: Jim Howard (james.howard@cummins.com)
- CT, MD, NJ, NY: Charles Attisani (charles.attisani@cummins.com)
- Northern IL, MI, IA: John Kilinskis (john.a.kilinskis@cummins.com)
- NE, SD, KS: Earnest Glaser (earnest.a.glaser@cummins.com)
- IL, IN, KY, MO: Jeff Yates (jeffrey.yates@cummins.com)
- LA, MS, AL: Trina Casbon (trina.casbon@cummins.com)
- TX: Scott Thomas (m.scott.thomas@cummins.com)
- OK, AR: Wes Ruebman (wes.ruebman@cummins.com)
- TN, GA: Mariano Rojas (mariano.rojas@cummins.com)
- FL: Bob Kelly (robert.kelly@cummins.com)
- NC, SC, VA: Bill Morris (william.morris@cummins.com)
- Canada: Ian Lindquist (ian.lindquist@cummins.com)
- PA, MD: Brian Cathcart (brian.cathcart@cummins.com)
- DE, MN, ND, OH, WI, WV: Michael Munson (michael.s.munson@cummins.com)
The views and opinions expressed in this course shall not be considered the official position of any regulatory organization and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Participants are encouraged to refer to the entire text of all referenced documents. In addition, when in doubt, reach out to the Authority Having Jurisdiction.
Course Objectives

Application and Code Considerations for Specifying Generator Set Fuel Sources

The installation of gaseous generator sets in a wide variety of applications continues to rise in North America while facility performance requirements, codes and standards are often most closely linked to their traditional diesel counterpart. As natural gas and propane fueled generator sets reach the market with “diesel-like” performance, it’s critical to understand how best to apply these products in order to maximize the value they provide. This course will provide an overview of gaseous generator set capabilities in various applications and will empower participants to recognize how to best apply gaseous generator sets to meet common performance and code requirements.

After completing this course, participants will be able to:

• Recognize performance requirements applicable to both diesel and gaseous generator sets.
• Describe key features and capabilities of gaseous generator sets.
• List key application considerations unique to gaseous generator set installations.
When compared to a diesel generator set, what are some of the differentiators unique to a natural gas (or propane) fueled generator set?
Generator Set Fuel Sources

Diesel and Gaseous Fuels

Diesel Fuel
- Power dense, high energy content
- ULSD Diesel #2 ASTM D975

Gaseous Fuel
- Variable energy content
- “Pipeline natural gas”

Diesel Fuel
Gasoline
Propane Liquid Gas
Propane gas
Natural Gas
Generator Set Fuel Sources

Gaseous Fuels

<table>
<thead>
<tr>
<th>Category</th>
<th>Also Known As</th>
<th>BTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Natural Gas</td>
<td>Pipeline Gas, Standard Gas</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Associated Petroleum Gas (APG)</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Flare Gas, Field Gas</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Associated-Dissolved Gas (ADG)</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Wellhead Gas</td>
<td>High</td>
</tr>
<tr>
<td>Unconventional Natural Gas</td>
<td>Coal Bed Methane (CBM)</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Coal Mine Methane (CMM)</td>
<td>~Low</td>
</tr>
<tr>
<td>Biogas</td>
<td>Anaerobic Digester Gas (ADG)</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Wastewater Treatment Plant Gas</td>
<td>Low</td>
</tr>
<tr>
<td>Syngas</td>
<td>Synthesis Gas, Pyrolysis Gas</td>
<td>Very Low</td>
</tr>
<tr>
<td>Industrial Gas</td>
<td>Town Gas</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

Spec Note Conduct a fuel sample analysis, include the results in the specification and require manufacturers to provide documentation demonstrating capability with the on-site fuel.
Generator Set Fuel Sources

Gaseous Fuels - Methane Number

Methane Index Number (MN)
- Defines likelihood of a fuel to auto-ignite
- Scale of 0-100
 - Higher MN may be less likely to auto-ignite (knock) and may be suitable for high power density applications.
 - Lower MN may be more likely to auto-ignite (knock) and may require power derate and/or timing changes.
- High quality pipeline natural gas is typically 80-90 MN.

Spec Note: Require generator set manufacturers to provide documentation indicating product performance at a specified Methane Number or range based on site fuel sample analysis.
Generator Set Fuel Sources

Gaseous Fuels - Methane Number

Methane Index Number (MN)
- Defines likelihood of a fuel to auto-ignite
- Scale of 0-100
 - Higher MN may be less likely to auto-ignite (knock) and may be suitable for high power density applications.
 - Lower MN may be more likely to auto-ignite (knock) and may require power derate and/or timing changes.
- High quality pipeline natural gas is typically 80-90 MN.

Spec Note: Require generator set manufacturers to provide documentation indicating product performance at a specified Methane Number or range based on site fuel sample analysis.
Generator Set Fuel Sources

Rich Burn and Lean Burn Engines

<table>
<thead>
<tr>
<th></th>
<th>Rich Burn</th>
<th>Lean Burn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Fuel Ratio</td>
<td>~14.6 : 1</td>
<td>~25 : 1</td>
</tr>
<tr>
<td>Excess Air (O₂)</td>
<td>0.2 to 0.8%</td>
<td>>4%</td>
</tr>
<tr>
<td>Typical Application</td>
<td>Fast start, large block loads</td>
<td>High efficiency, continuous operation, ramping load</td>
</tr>
<tr>
<td>Emissions</td>
<td>Aftertreatment may be required to reduce NOx and CO</td>
<td>Can often meet emissions requirements without aftertreatment</td>
</tr>
</tbody>
</table>
Generator Set Fuel Sources

Rich Burn and Lean Burn Engines

<table>
<thead>
<tr>
<th></th>
<th>Rich Burn</th>
<th>Lean Burn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Fuel Ratio</td>
<td>~14.6 : 1</td>
<td>~25 : 1</td>
</tr>
<tr>
<td>Excess Air (O₂)</td>
<td>0.2 to 0.8%</td>
<td>>4%</td>
</tr>
<tr>
<td>Typical Application</td>
<td>Fast start, large block</td>
<td>High efficiency, continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>operation, ramping load</td>
</tr>
<tr>
<td>Emissions</td>
<td>Aftertreatment may be required</td>
<td>Can often meet emissions</td>
</tr>
<tr>
<td></td>
<td>to reduce NOx and CO</td>
<td>requirements without</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aftertreatment</td>
</tr>
</tbody>
</table>

Spec Note Specify project requirements critical to the generator set such as transient performance, motor starting capability or emissions limits. Avoid specifying “Rich Burn” or “Lean Burn” as it may drive unnecessary product requirements.
Concept Check

When describing gaseous fuels, which of the following attributes are often used to describe fuel composition? (Choose one)

a) Methane Number (MN)
b) ASTM D975
c) Air/Fuel Ratio
d) Smell & odor
When describing gaseous fuels, which of the following attributes are often used to describe fuel composition? Choose all that apply.

- Methane Number (MN)
- ASTM D975
- Air/Fuel Ratio
- Smell & odor
Compliance to Codes and Standards

Myths and Misconceptions

MYTH: “Gaseous generator sets may not be suitable for emergency or life safety applications.”
Compliance to Codes and Standards

Fuel Source for Emergency Systems

NFPA 110-2019

5.1.1 The following energy sources shall be permitted to be used for the emergency power supply (EPS):

(1) Liquid petroleum products…
(2) Liquified petroleum gas…
(3) Natural or synthetic gas

Exception: For Level 1 installations in locations where the probability of interruption of off-site fuel supplies is high, on-site storage of an alternate energy source sufficient to allow full output of the EPSS to be delivered for the class specified shall be required, with the provision for automatic transfer from the primary energy source to the alternate energy source.
Compliance to Codes and Standards

Fuel Source for Emergency Systems

NFPA 110-2019

5.1.1 The following energy sources shall be permitted to be used for the emergency power supply (EPS):

(1) Liquid petroleum products…
(2) Liquified petroleum gas…
(3) Natural or synthetic gas

Exception: For Level 1 installations in locations where the probability of interruption of off-site fuel supplies is high, on-site storage of an alternate energy source sufficient to allow full output of the EPSS to be delivered for the class specified shall be required, with the provision for automatic transfer from the primary energy source to the alternate energy source.

Natural Gas Council

Natural gas is a secure, reliable and resilient choice for customers

- Operational reliability
 - 2017 survey of 51 interstate pipelines – 99.97% of contractual commitments
 - Geographic dispersion of production reduces vulnerability to local weather
 - Transportation network interconnected, offering multiple pathways for rerouting

- Contractual continuity of service
 - Firm or interruptible contracts

Reprinted with permission from NFPA 110-2019, Standard for Emergency and Standby Power Systems. Copyright © 2015, National Fire Protection Association, Quincy, MA. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety which can be obtained through the NFPA web site at www.nfpa.org.
Compliance to Codes and Standards
Fuel Source for Emergency Systems – Canada

CSA 282 Emergency Electrical Power Supply for Buildings

7.3.1 Minimum Quantity
 A quantity of fuel sufficient for operating the engine under maximum site design load for at least 2h shall be maintained on site at all times…

7.3.2 Health care facilities
 …where a generator set is required for emergency power supply to essential electrical systems in conformance with CSA Z32, a fuel supply shall be maintained on site at all times…

7.3.3 Off-site fuel supply
 Notwithstanding Clause 7.3.1, when it can be demonstrated to the authority having jurisdiction that the reliability of the off-site utility fuel supply and the associated piping meets the requirements of Clause 7.3.1 for a continuous fuel supply, on-site storage might not be required.
Compliance to Codes and Standards

Fuel Source for Emergency Systems

Map of U.S. interstate and intrastate natural gas pipelines

Source: U.S. Energy Information Administration, About U.S. Natural Gas Pipelines
Compliance to Codes and Standards

Fuel Source for Emergency Systems

<table>
<thead>
<tr>
<th>NFPA 70 – NEC Article:</th>
<th>Diesel</th>
<th>Gaseous (utility & on-site fuel source)</th>
<th>Gaseous (utility source only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>708 “COPS”</td>
<td>✓</td>
<td>✓</td>
<td>✗*</td>
</tr>
<tr>
<td>700 “Life Safety”</td>
<td>✓</td>
<td>✓</td>
<td>✓*</td>
</tr>
<tr>
<td>701 “Legally Req’d”</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>702 “Optional”</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Follow exemption process w/ AHJ per NFPA 110 Level 1 Systems

** NEC Article 708: **Prime movers shall not be solely dependent on a public utility gas system for their fuel supply… Where internal combustion engines are used as the prime mover, an on-site fuel supply shall be provided…

Spec Note Specify natural-gas fueled generator sets for emergency power systems where permitted by the local Authority Having Jurisdiction. (Perform a Hazard Analysis or Risk Assessment with the utility and AHJ early in the design phase.)
Compliance to Codes and Standards

Generator Set Ratings

ISO 8528: Defines application, ratings and performance of generator sets.

- Emergency Standby Power (ESP)
- Prime Rated Power (PRP)
- Limited Time Prime Power (LTP)
- Continuous Operating Power (COP)
- Data Center Power (DCP)

Any manufacturer can go above and beyond the ISO ratings definitions.
Compliance to Codes and Standards

Generator Set Ratings

Emergency Standby Power (ESP)

- “Maximum power available during a variable electrical power sequence…for up to 200 h of operation per year”
- “The permissible average power output over 24 h of operation shall not exceed 70% of the ESP unless otherwise agreed by the RIC engine manufacturer”

Spec Note Specify ISO 8528 generator set power rating based on application requirements.
4.3 Type. The type defines the maximum time, in seconds, that the EPSS will permit the load terminals of the transfer switch to be without acceptable electrical power.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Power Restoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type U</td>
<td>Basically uninterruptible (UPS systems)</td>
</tr>
<tr>
<td>Type 10</td>
<td>10 sec</td>
</tr>
<tr>
<td>Type 60</td>
<td>60 sec</td>
</tr>
<tr>
<td>Type 120</td>
<td>120 sec</td>
</tr>
<tr>
<td>Type M</td>
<td>Manual stationary or nonautomatic — no time limit</td>
</tr>
</tbody>
</table>
Compliance to Codes and Standards

NFPA 110 Type Requirements

4.3 Type. The type defines the maximum time, in seconds, that the EPSS will permit the load terminals of the transfer switch to be without acceptable electrical power.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Power Restoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type U</td>
<td>Basically uninterruptible (UPS systems)</td>
</tr>
<tr>
<td>Type 10</td>
<td>10 sec</td>
</tr>
<tr>
<td>Type 60</td>
<td>60 sec</td>
</tr>
<tr>
<td>Type 120</td>
<td>120 sec</td>
</tr>
<tr>
<td>Type M</td>
<td>Manual stationary or nonautomatic — no time limit</td>
</tr>
</tbody>
</table>

Spec Note Specify NFPA 110 Type requirement for Emergency Power Supply System based on application requirements and loads served.
Compliance to Codes and Standards
Starting Time Requirements – Canada

CSA 282
6.4 Power Supply Performance
 6.4.1.b …an emergency electrical power supply system shall be connected to life safety equipment …and similar equipment essential for the operation of the emergency electrical power supply system within:
 i) 15 s of loss of normal power
 ii) 10 s of loss of normal power … to vital loads of the essential electrical systems in conformance with CSA Z32

6.4.1.c Connections to firefighters’ elevators, elevators serving floors above the first story in a high building, and smoke-venting fans may be delayed up to 60 s.

CSA Z32
6.2.1 Vital and delayed vital branches …allow the vital and delayed vital branch loads to be transferred within 10 s and 2 min, respectively…
Compliance to Codes and Standards

Myths and Misconceptions

MYTH: “Gaseous generator sets may not be suitable for emergency or life safety applications.”

- Generator set manufacturers may be able to offer gaseous-fueled products that meet a wide range of applications.
- Natural gas may be acceptable to local authority having jurisdiction for life safety applications.
- Gaseous products may provide advantages over diesel products in applications due to fuel quality and logistics.
Compliance to Codes and Standards

Myths and Misconceptions

MYTH: “Because gaseous generator sets are ALWAYS cleaner than their diesel counterparts and they NEVER need exhaust aftertreatment.”
Compliance to Codes and Standards

Emissions Requirements

<table>
<thead>
<tr>
<th></th>
<th>Definition</th>
<th>How is it formed?</th>
<th>Diesel Engine</th>
<th>Gaseous Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO<sub>x</sub></td>
<td>Oxides of nitrogen</td>
<td>Forms at high in-cylinder temperatures, most prominent during high engine load.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HC</td>
<td>Over 100 different types of hydrocarbons</td>
<td>Product of incomplete combustion, most prominent during low engine load.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PM</td>
<td>Anything that is trapped on or condenses onto a filter</td>
<td>Most prominent during low load operation.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
<td>Product of imperfect combustion, most prominent during low engine load.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SO<sub>x</sub></td>
<td>Oxides of Sulfur</td>
<td>Product of combustion process when sulfur is present. Increases linearly with fuel consumption.</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Compliance to Codes and Standards

Emissions Requirements

US EPA New Source Performance Standards (NSPS)

Fuel Type
- Compression Ignition (Diesel) and Spark-Ignited (Gaseous)

Usage
- Stationary Emergency – operation when utility power is not available
- Stationary Non-Emergency – operation when utility power is available
- Non-road – mobile, non-propulsion without operational limitation (trailerized)
Compliance to Codes and Standards

Emissions Requirements

- Mandatory factory certification of rich burn propane engines
- Optional factory certification of all natural gas engines and lean burn propane engines
- If not factory certified, the owner/operator may be responsible for demonstrating compliance:

<table>
<thead>
<tr>
<th>Engine Power</th>
<th>Maintenance plan and records, maintain/operate engine in a way to minimize emissions</th>
<th>Initial performance testing within 1 year of engine startup</th>
<th>Subsequent performance testing every 8,760 hours or 3 years, whichever comes first</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 hp</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-500 hp</td>
<td>✓ ✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>> 500 hp</td>
<td>✓ ✓ ✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Reference: 40 CFR 60 Subpart JJJJ §60.4243 (a)(2)(i-iii)

Spec Note Require generator set vendor to provide documentation demonstrating compliance with specific emissions levels or engine certification.
Compliance to Codes and Standards

Emissions Requirements - Canada

Maintenance and NOx emission intensity limits for modern engines

<table>
<thead>
<tr>
<th>Engine Power</th>
<th>NOx emission intensity limit</th>
<th>Initial performance testing within 1 year of engine startup</th>
<th>Subsequent emissions checks every year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular-Use, Modern Engines</td>
<td>NOx emission intensity limit Ppmvd-15% / g/kWh</td>
<td>Initial performance testing within 1 year of engine startup</td>
<td>Subsequent emissions checks every year</td>
</tr>
<tr>
<td>75 - 375 kW</td>
<td>160 / 2.7</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>< 375 kW</td>
<td>160 / 2.7</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine Power</th>
<th>NOx emission intensity limit</th>
<th>Initial performance testing within 1 year of engine startup</th>
<th>Subsequent emissions checks every year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Use, Modern Engines</td>
<td>NOx emission intensity limit Ppmvd-15% / g/kWh</td>
<td>Initial performance testing within 1 year of engine startup</td>
<td>Subsequent emissions checks every year</td>
</tr>
<tr>
<td>< 100 kW</td>
<td>160 / 2.7</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Pre-existing engines information not shown; Reference: Multi-Sector Air Pollutant Regulations (MSAPR) SOR/2016-151) Part 2
Compliance to Codes and Standards

Emissions Requirements

US EPA New Source Performance Standards (NSPS)

Fuel Type
- Compression Ignition (Diesel) and Spark-Ignited (Gaseous)

Usage
- Stationary Emergency – operation when utility power is not available
- Stationary Non-Emergency – operation when utility power is available
- Non-road – mobile, non-propulsion without operational limitation (trailerized)

Local Air Quality Management Board
- May mandate stringent emissions limits requiring exhaust aftertreatment

Spec Note Require generator set vendor to provide documentation demonstrating compliance with specific emissions level requirement and applicable test methodology.
Compliance to Codes and Standards

Aftertreatment Systems

Emissions requirements and usage may drive need for aftertreatment when applicable

- Diesel Particulate Filter (DPF) reduces PM
- Selective Catalytic Reduction (SCR) reduces NOx
- Oxidation Catalyst (OxiCat) reduces CO, HC, some PM
- Three Way Catalyst reduces CO, HC, some PM

Spec Note Federal and local emissions requirements & usage are key specification inputs. Work with manufacturer to determine best approach for aftertreatment systems if necessary.
Compliance to Codes and Standards

Myths and Misconceptions

MYTH: “Because gaseous generator sets are cleaner than their diesel counterparts, they NEVER need exhaust aftertreatment.”

- Emissions limits may be based on a combination of Federal (US EPA), state (local air board) or customer-driven requirements.
- Application type (standby vs. nonroad, emergency vs. non-emergency) drive emissions limits.
- Engine manufacturers offer a wide range of products capable of meeting the most stringent requirements.
- In some cases, exhaust aftertreatment may be needed to achieve targeted emissions levels.
Concept Check

When specifying a generator set solution for an emergency power system, make sure to include… (choose all that apply)

a) US EPA and other applicable emissions requirements
b) ISO 8528 Power rating
c) NFPA 110 Type requirement for system
d) Engine air/fuel ratio
Concept Check

When specifying a generator set solution for an emergency power system, make sure to include… (choose all that apply)

a) US EPA and other applicable emissions requirements
b) ISO 8528 Power rating
c) NFPA 110 Type requirement for system
d) Engine air/fuel ratio
Installation Considerations

Gaseous and Diesel Generator Sets

- Foundation, mounting and vibration isolation
- Exhaust systems
- Cooling and ventilation
- Service and maintenance access
- Starting system
- Sound considerations
- Remote monitoring solutions
- Housing and enclosure requirements

Related Content
Generator Set Application Manual
Application Guidelines T-030
Installation Considerations

Fuel Source and Maintenance

Maintenance of Diesel Fuel

Diesel fuel quality critical to equipment operation.

- Typical stable lifespan of diesel is 12 – 16 months in ideal conditions.
- Diesel sulfur content reduction (ULSD) limits fuel's anti-microbial properties.
- Bio-diesel blending may reduce fuel stability (up to 6 months), promotes water absorption and biomass growth.

Spec Note Require vendors to provide service and maintenance contracts that include fuel testing at least annually.
Installation Considerations

Fuel Source and Maintenance

Maintenance of Gaseous Fuel

- Natural gas available through extensive pipeline network
- Avoid fuel transportation, handling, and storage issues
- No fuel tank cleaning required
- No fuel degradation over time
- Various fuels can be used
Installation Considerations

Fuel System Requirements

- Volume and pressure must be available at **RATED** load, not static pressure
- Be aware of fuel system pressure drop
- Provide a dedicated fuel line to generator set
- Accumulator or compressor to boost pressure, if necessary
- Consult generator set manufacturer for specific fuel system requirements.

Fuel system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas supply pressure to engine inlet, bar (psi)</td>
<td>0.2 (2.9)</td>
</tr>
<tr>
<td>Minimum methane index</td>
<td>62</td>
</tr>
</tbody>
</table>

Spec Note Require generator set vendors to provide documentation indicating engine minimum fuel pressure at rated load.
Operational Considerations

Operating Costs of NG-Fueled Generator Sets

Natural Gas Operating Costs

- Natural gas generator set may be associated with greater capital costs (when compared to diesel) due to power density.
- Long term total cost of ownership indicates for diesel and natural gas products to be comparable in similar applications.
- Non-emergency operation (demand response, peaking, etc.) mandates Tier 4 levels for CI engines minimizing capital investment difference when compared to natural gas.

www.eia.gov/naturalgas
Gaseous Generator Set Applications
Myths and Misconceptions

MYTH: “Gaseous generator set transient performance and load acceptance is always worse than their diesel counterparts.”

- ✓ Engine control and fueling strategies continue to evolve.
- ✓ Rated load acceptance may not be suitable as a benchmark for product performance – transient performance limits must be based on application.
- ✓ Generator set sizing software may help to determine right-size generator set for a given application.

Spec Note Require generator set vendors to provide documentation from sizing software indicating compliance with transient and other project limits.

GenSize on powersuite.cummins.com
When considering natural gas generator sets, which of these are NOT a key installation and operational differentiators when compared to diesel generator sets?

a) Fuel system design requirements
b) Fuel quality management
c) Foundation, mounting and vibration
d) Cost of operation
Concept Check

When considering natural gas generator sets, which of these are NOT a key installation and operational differentiators when compared to diesel generator sets?

a) Fuel system design requirements
b) Fuel quality management
c) Foundation, mounting and vibration
d) Cost of operation
Gaseous Generator Sets

Key Takeaways

Natural gas fueled generator sets can provide…

… reliable power generation in emergency and non-emergency applications
… emissions solutions that fit application requirements
… high efficiency options for prime and continuous operation
… compliance with appropriate codes and standards
… low or comparable cost of ownership
… strong performance capability comparable to diesel counterparts.
Course Summary

Considerations for Specifying Generator Set Fuel Sources

• Recognize performance requirements applicable to both diesel and gaseous generator sets.
• Describe key features and capabilities of gaseous generator sets.
• List key considerations unique to gaseous generator set installation.

Key Takeaways

• Write specifications based on performance and application requirements such loads, transient limits, emissions, start-time and other code-driven requirements.
• Consider gaseous-fueled generator sets in applications where appropriate.
Additional Resources

Cummins White Papers

- NFPA 110 Type 10 Starting Requirements for Generator Set Applications
- Understanding EPA NSPS Emissions Regulations for Stationary Spark-ignited Engines
- The Latest Evolution Of Distributed Energy Resources: Opportunity For Business Within The PJM

Cummins On-Demand Webinars

- NFPA 110 Type 10 Requirements for Emergency Power Systems
- Gaseous Generator Set Installations and Case Studies
- Introduction to Generator Set Sizing Software
- EPA Emissions and Air Permitting
Q&A

Please type your questions, comments and feedback in the Zoom Q&A window.

After the PowerHour, a complete list of questions and answers will be published on powersuite.cummins.com.

Please complete the brief survey after exiting the webinar!

Your local Cummins contacts:

- AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com)
- CO, MT, ND, UT, WY: Christopher Scott (christopher.l.scott@cummins.com)
- CA, WA, OR, AK, HI: Brian Pumphrey (brian.pumphrey@cummins.com)
- MA, ME, NH, RI, VT: Jim Howard (james.howard@cummins.com)
- CT, MD, NJ, NY: Charles Attisani (charles.attisani@cummins.com)
- Northern IL, MI, IA: John Kilinskis (john.a.kilinskis@cummins.com)
- NE, SD, KS: Earnest Glaser (earnest.a.glaser@cummins.com)
- IL, IN, KY, MO: Jeff Yates (jeffrey.yates@cummins.com)
- LA, MS, AL: Trina Casbon (trina.casbon@cummins.com)

- TX: Scott Thomas (m.scott.thomas@cummins.com)
- OK, AR: Wes Ruebman (wes.ruebman@cummins.com)
- TN, GA: Mariano Rojas (mariano.rojas@cummins.com)
- FL: Bob Kelly (robert.kelly@cummins.com)
- NC, SC, VA: Bill Morris (william.morris@cummins.com)
- Canada: Ian Lindquist (ian.lindquist@cummins.com)
- PA, MD: Brian Cathcart (brian.cathcart@cummins.com)
- DE, MN, ND, OH, WI, WV: Michael Munson (michael.s.munson@cummins.com)
Closing

Watch out for a follow-up email including:
- A link to the webinar recording and copy of the presentation
- A certificate issuing one professional development hour (1 PDH)

Visit powersuite.cummins.com for:
- Sizing and specification development tools
- PowerHour webinar recordings, presentations and FAQ
- Additional Cummins continuing education programs

Check out our new podcast, Brightest Bulbs:
- Learn about the latest innovations in energy and power
- Subscribe wherever you get your podcasts, or the link above

Visit cummins.com/energy-ig and sign-up for communications to:
- Receive energy insights
- Read about energy technologies and trends

Upcoming PowerHour Webinars:
March – “Ask the Experts” for NFPA 110 Standard for Emergency and Standby Power Systems

Please contact Michael Sanford if you have any questions related to the PowerHour webinar (michael.sanford@cummins.com)