Generator Set Sizing Software: Transient Performance and Motor Load Capabilities

PowerHour webinar series for consulting engineers

Experts you trust. Excellence you count on.

March 26th, 2020
Welcome!

PowerHour is designed to help our engineer partners to…

• Keep up to date on products, technology, and codes and standards development
• Interact with Cummins experts and gain access to ongoing technical support
• Participate at your convenience, live or on-demand
• Earn Professional Development Hours (PDH)

Technical tips:
- Audio is available through teleconference, or your computer (don’t forget to unmute)
- You are in “listen only” mode throughout the event
- Use the WebEx Q&A Panel to submit questions, comments, and feedback throughout the event. We will provide sufficient Q&A time after presentation
- If you lose audio, get disconnected, or experience a poor connection, please disconnect and reconnect
- Report technical issues using the WebEx Q&A Panel, or email powergenchannel@cummins.com
Meet your panelists

Cummins presenter:

Obinna Igwe
Senior Application Engineer – Distribution Support
Cummins Inc.

Cummins facilitator:

Chad Hale,
Technical Marketing Specialist
Cummins Inc.

Your local Cummins contacts:

- Western Canada: Ian Lindquist (ian.Lindquist@cummins.com), Western Canada Region
- Eastern Canada: Gianluca Ianiro (gianluca.ianiro@cummins.com), Eastern Canada Region
- AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- CO, MT, ND, UT, WY: Chris Scott (chris.scott@cummins.com), Rocky Mountain Region
- Northern IL, IA: John Kilinskis (john.a.kilinskis@cummins.com), Central Region
- UP of MI, MN, East ND, WI: Michael Munson (michael.s.munson@cummins.com), Central Region
- NE, SD, West MO, KS: Earnest Glaser (earnest.a.glaser@cummins.com), Central Region
- South IL, East MO: Jeff Yates (jeffrey.yates@cummins.com), Central Region
- TX, OK, AR, LA, MS, AL, Western TN: Scott Thomas (m.scott.thomas@cummins.com), Gulf Region
- FL, GA, NC, SC, Eastern TN: Robert Kelly (robert.kelly@cummins.com), South Region
- NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com), East Region
- CA, HI: Brian E Pumphrey (brian.pumphrey@cummins.com), Pacific Region
- For other states and territories, email powergenchannel@cummins.com or visit http://power.cummins.com/sales-service-locator
Disclaimer

The views and opinions expressed in this course shall not be considered the official position of any regulatory organization and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Participants are encouraged to refer to the entire text of all referenced documents. In addition, when in doubt, reach out to the Authority Having Jurisdiction.
Course Objectives

Generator Set Sizing Software: Transient Performance and Motor Load Capabilities

When sizing a generator set, one must consider the various loads in the power system and their effect on transient response. Due to their challenging starting requirements, motor loads may drastically impact generator sizing and selection inadvertently disrupting the balance between transient performance and avoiding oversizing. This session will explore the process of generator set selection for motors loads using a commercially available sizing and selection platform. Participants are encouraged to sign up for Power Suite at powersuite.cummins.com beforehand, and are welcome to follow along with the demonstration.

After completing this course, participants will be able to:

• Describe the unique nature of motor loads and their characteristics that may impact starting requirements
• Recognize the impacts of motor starting requirements on transient performance
• Identify solutions to better manage motor load induced transient response as related to generator set sizing
Basic Characteristics of Motor Loads

- When a motor is first connected to the generator, an instantaneous voltage dip occurs which is a function of alternator transient reactance, X’d, and the motor impedance. This is highlighted in the Locked rotor kVA curve on alternator datasheets.

- Motor loads cause difficulty because a motor draws high current when started at full voltage. Starting current is typically six times a motor’s rated full-load current, and this inrush current stays high until the motor reaches about 75 percent of rated speed.

- This presents a unique problem where the voltage and frequency dips considerably during the starting process on Generator Sets as opposed to Utility due to its robust nature.

- Various methods are employed to limit these instantaneous voltage and frequency dips in order to avoid oversizing a generator set for conditions only seen during startup e.g. soft starters, VFDs etc.
Understanding a Motor Nameplate

When modeling a motor load, pay close attention to the following parameters:

- Horsepower
- Phase
- Voltage
- Frequency
- Efficiency
- NEMA Code
- Service Factor

Figure 1: Siemens 286T 30HP Motor Name Plate
Effects of Nameplate Parameters

Efficiency:
Efficiency does not affect the starting characteristics of the motor load, however, it does directly affect its running kW and amps.

NEMA Code:
The Locked Rotor KVA Code or NEMA Code defines the locked rotor current kVA on a per horsepower basis. The letter code consists of letters from A to V. The farther away from the letter code A, the higher the inrush current per horsepower.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>H</td>
<td>6.7</td>
<td>R</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>3.3</td>
<td>J</td>
<td>7.5</td>
<td>S</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>3.8</td>
<td>K</td>
<td>8.5</td>
<td>T</td>
<td>19</td>
</tr>
<tr>
<td>D</td>
<td>4.2</td>
<td>L</td>
<td>9.5</td>
<td>U</td>
<td>21.2</td>
</tr>
<tr>
<td>E</td>
<td>4.7</td>
<td>M</td>
<td>10.6</td>
<td>V</td>
<td>23</td>
</tr>
<tr>
<td>F</td>
<td>5.3</td>
<td>N</td>
<td>11.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5.9</td>
<td>P</td>
<td>13.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Multiplying factors corresponding with code letters, T-030
Effects of Nameplate Parameters cont.

Service Factor:
• A motor’s service factor represents its ability to deliver horsepower beyond its nameplate rating under specified conditions
• Thus, a motor with 1.15 service factor motor can be operated at 15% higher than the motor’s nameplate power

Voltage:
• The NEMA standard for motor voltage ratings assumes that there is a voltage drop from the utility supply to the motor terminals
• Thus, a 460V motor is appropriate for a 480V supplied system
• Most motors are designed with a ±10% tolerance for voltage

Frequency:
There are some drawbacks in service of a 50Hz motor on a 60Hz system
• Increased core loss which causes overheating of core
• Reduced motor bearing life (marginal) due to increased speed and load
Alternator Motor Starting

• The Locked Rotor Curves are used as a guide to indicate the expected transient voltage dip/rise upon impact/rejection of load

• It starts from an assumption that the alternator is operating at rated voltage and then a block load is suddenly applied

• The curves are based on results from tests conducted in accordance with the requirements of IEC 60034

• The voltage dip is a product of the alternator’s reactances, both sub-transient (X”d) and transient (X’d),

Spec Note Transient data from generator set testing should be employed for accurate characterization of performance
Alternative Starting Methods

• Motors typically start DOL/Across-The-Line where the starter applies full voltage, current, and torque immediately upon starting.

• Alternative starting methods are employed to help reduce the mentioned motor starting requirements. Some of the popular methods include:

 • Variable Frequency Drives (VFD): A type of motor controller that drives an electric motor by varying the frequency and voltage supplied to the electric motor. These drives induce varying levels of harmonics on the power system depending on quality and configuration.

 • Soft Starters: Devices or configurations used with AC electrical motors to temporarily reduce the load and torque in the power train and electric current surge of the motor during start-up e.g. Wye-Delta, Part-Windings, Auto Transformer.
Load Sequencing

• Load sequencing is a technique used to enhance transient performance of a generator set by limiting the maximum starting kW put on the generator set by breaking it down into various steps.

• There are several options available:
 • Multiple Transfer Switches
 • Breakers
 • Programmable Logic Controllers

• Here are some recommendations:
 • Apply loads in multiple steps
 • Allow recovery between steps (5-10 Sec)
 • Start larger loads first (after critical loads)
Generator Set Sizing Software Demo

• We shall move on to the demonstration portion of this webinar

• Users are encouraged to follow along on PowerSuite.cummins.com
Course Summary

Generator Set Sizing Software: Transient Performance and Motor Load Capabilities

• Get as much information as possible on load attributes and site conditions prior to sizing
• Apply proper load sequencing techniques to ensure ideal transient performance
• Employ the use of alternative starting methods for high inrush loads like motors
• Collaborate with your local generator set provider e.g. using the “project share” feature on Gensize

Key Software features for properly sizing motor loads

• Fully customizable motor load options to ensure available starting methods can be simulated
• Generator Set derate functionality to assure performance at extreme ambient temperature and altitudes
• Data-Driven transient performance calculations for accuracy
• Ability to generate a comprehensive report showing load attributes, model information, performance etc.
Additional Resources

Cummins White Papers
- Transient Performance Of Generating Sets
- Specifying And Validating Motor Starting Capability
- How to size a genset: Proper generator set sizing requires analysis of parameters and loads

Cummins On-Demand Webinars
- Introduction to Generator Set Sizing Software
Q&A

Type your questions, comments, feedback in the WebEx Q&A box. We will get to as many questions as we can. We will publish consolidated FAQ along with presentation and webinar recording on powersuite.cummins.com

Your local Cummins contacts:
- Western Canada: Ian Lindquist (ian.lindquist@cummins.com), Western Canada Region
- Eastern Canada: Gianluca Ianiro (gianluca.ianiro@cummins.com), Eastern Canada Region
- AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- CO, MT, ND, UT, WY: Joe Pekarek (joe.a.pekarek@cummins.com), Rocky Mountain Region
- Northern IL, IA: John Kilinskis (john.a.kilinskis@cummins.com), Central Region
- UP of MI, MN, East ND, WI: Michael Munson (michael.s.munson@cummins.com), Central Region
- NE, SD, West MO, KS: Earnest Glaser (earnest.a.glaser@cummins.com), Central Region
- South IL, East MO: Jeff Yates (jeffrey.yates@cummins.com), Central Region
- TX, OK, AR, LA, MS, AL, Western TN: Scott Thomas (m.scott.thomas@cummins.com), Gulf Region
- FL, GA, NC, SC, Eastern TN: Robert Kelly (robert.kelly@cummins.com), South Region
- NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com), East Region
- CA, HI: Brian E Pumphrey (brian.pumphrey@cummins.com), Pacific Region
- WA, OR, AK: Tom Tomlinson (tom.tomlinson@cummins.com), Pacific Region
- For other states and territories, email powergenchannel@cummins.com or visit http://power.cummins.com/sales-service-locator
Closing

Watch out for a follow-up email including:

- A Link to webinar recording and presentation
- A PDH Certificate

Visit powersuite.cummins.com for:

- PowerHour webinar recording, presentation and FAQ archive
- Other Cummins Continuing Education programs
- Sizing and specification development tools

Visit cummins.com/energy-iq and sign-up for communications to:

- Receive energy insights
- Read about energy technologies and trends

Upcoming PowerHour Webinars:

- April – Using Fuel Cells to Address Energy Growth and Sustainability Challenges in Data Centers
- April – Case Study Analysis: Gaseous-Fueled Applications

Please contact Mohammed Gulam if you have any questions related to the PowerHour webinar (mohammed.gulam@cummins.com)
Q+A