Understanding and Applying UL 1008 Transfer Switch Withstand And Closing Rating (WCR)

PowerHour webinar series for consulting engineers
Experts you trust. Excellence you count on.

February 25th, 2020
(1PDH issued by Cummins)
Welcome!

Cummins PowerHour program intends to empower Cummins Sales, Upstream Influencing and Application Engineering organizations through:

• Consistent awareness of products, technology, and codes and standards development
• Awareness and access to tools and resources
• Interaction with Cummins subject matter experts

This PowerHour, including Q&A, is being recorded for on-demand playback:

powersuite.cummins.com → “Continuing Education” tab
Welcome!

Technical tips:

- Audio is available through teleconference, or your computer (don’t forget to unmute)
- You are in “listen only” mode throughout the event
- Use the WebEx Q&A Panel to submit questions, comments, and feedback throughout the event. We will provide sufficient Q&A time after presentation
- If you lose audio, get disconnected, or experience a poor connection, please disconnect and reconnect
- Report technical issues using the WebEx Q&A Panel, or email powergenchannel@cummins.com

This PowerHour, including Q&A, is being recorded for on-demand playback:

- Find all prior recordings at Powersuite.cummins.com → “Continuing Education” tab
Meet Your Panelists

**Cummins presenter:**

Hassan R Obeid  
Global Technical Advisor – Systems and Controls  
Cummins Inc.

**Cummins facilitator:**

Michael Sanford  
Technical Marketing Specialist  
Cummins Inc.

Your local Cummins contacts:

- Western Canada: Ian Lindquist (ian.Lindquist@cummins.com), Western Canada Region
- Eastern Canada: Gianluca Ianiro (gianluca.ianiro@cummins.com), Eastern Canada Region
- AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- CO, MT, ND, UT, WY: Chris Scott (chris.scott@cummins.com), Rocky Mountain Region
- Northern IL, IA: John Kilinskis (john.a.kilinskis@cummins.com), Central Region
- UP of MI, MN, East ND, WI: Michael Munson (michael.s.munson@cummins.com), Central Region
- NE, SD, West MO, KS: Earnest Glaser (eamest.a.glaswer@cummins.com), Central Region
- South IL, East MO: Jeff Yates (jeffrey.yates@cummins.com), Central Region
- TX, OK, AR, LA, MS, AL, Western TN: Scott Thomas (m.scott.thomas@cummins.com), Gulf Region
- FL, GA, NC, SC, Eastern TN: Robert Kelly (robert.kelly@cummins.com), South Region
- NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com), East Region
- CA, HI: Brian E Pumphrey (brian.pumphrey@cummins.com), Pacific Region
- For other states and territories, email powerгенchannel@cummins.com or visit http://power.cummins.com/sales-service-locator
Disclaimer

The views and opinions expressed in this course shall not be considered the official position of any regulatory organization and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Participants are encouraged to refer to the entire text of all referenced documents. In addition, when in doubt, reach out to the Authority Having Jurisdiction.
Course Objectives

Understanding and Applying UL 1008 Transfer Switch Withstand And Closing Rating (WCR)

Transfer switches come in a variety of types for use in a wide array of applications and are tested to meet UL 1008 Standard for Safety - Transfer Switch Equipment. This course discusses some of the UL 1008 testing criteria and specifically focuses on the required withstand and closing rating that is either time-based or specific overcurrent protection device based. In addition, this course covers the optional UL 1008 short-time rating.

After completing this course, participants will be able to:

- Discuss the UL 1008 requirements for transfer switch withstand and closing ratings
- Explain the required UL 1008 withstand and closing rating which can be time-based or specific overcurrent protection device based and how that can impact the transfer switch selection
- Describe the optional UL 1008 short-time rating and review how and where it can be applied
Power System Building Blocks

- Paralleling Generator Sets
- Distribution Board
- Transfer Switches
- Digital Master
- Digital Cloud Solutions
- Grid
- Loads
The Role Of Transfer Switches

- Load transfer between power sources
  - Senses loss of normal power
  - Starts the generator set
  - Transfers the load to the generator set
  - Detects availability of normal power
  - Transfers load back to the normal source

OCPD: Overcurrent Protection Device
- Energized
- De-energized
The Role Of Transfer Switches

- Load transfer between power sources
  - Senses loss of normal power
  - Starts the generator set
  - Transfers the load to the generator set
  - Detects availability of normal power
  - Transfers load back to the normal source

- Load shed
  - Might be required per the National Electric Code (NEC)
    - Adequate capacity
    - Selective means to shed non-critical loads
  - Three position transfer switch is required for load shedding
UL 1008 Testing

- UL 1008 specifies stringent testing requirements
  - Temperature rise test
  - Dielectric voltage-withstand test
  - Overload test
  - Contact opening test
  - Endurance test
    - Short-circuit test
    - Dielectric voltage-withstand test (following short-circuit withstand/closing test)
    - Short-time current test (optional)
What Is A Short-Circuit WCR?

- One of the key items to consider when selecting a transfer switch is fault current capabilities
- Overcurrent Protection Devices (OCPD) clear faults
  - Fuses
  - Circuit breakers
- OCPDs have an Ampere Interrupting Capacity (AIC) rating
- The AIC rating is the maximum available fault current that an OCPD will safely clear when a fault is applied at the load side of the OCPD
- Transfer switches are not rated to clear faults and therefore don't have an AIC rating
What Is A Short-Circuit WCR?

- Per UL 1008, transfer switches must:
  - Withstand the fault current
  - Close on the fault current
- Transfer switches have a short-circuit Withstand and Closing Rating (WCR)
## UL 1008 Short-Circuit Test Requirements

Available Short-Circuit Current

<table>
<thead>
<tr>
<th>Switch Rating (A)</th>
<th>Current* (A)</th>
<th>Power Factor*</th>
<th>Time Duration (s), minimum*</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 or less</td>
<td>5,000</td>
<td>0.40 - 0.50</td>
<td>0.008</td>
</tr>
<tr>
<td>101 - 400</td>
<td>10,000</td>
<td>0.40 - 0.50</td>
<td>0.025</td>
</tr>
<tr>
<td>401 - 1000</td>
<td>20x rating but not less than 10,000</td>
<td>0.25 - 0.30</td>
<td>0.050</td>
</tr>
<tr>
<td>1001 and greater</td>
<td>20x rating</td>
<td>0.20 or less</td>
<td>0.050</td>
</tr>
</tbody>
</table>

*Current can be higher, power factor can be lower, time durations can be different

Data is from Table-25 of UL 1008 8th edition
Transfer Switch Short-Circuit WCR Testing

- Withstand test (starts with contacts closed):
  - A specified fault current is applied for either:
    - A specific duration
    - OR
    - Until a specific OCPD trips

- Closing test (starts with contacts open then close):
  - The same transfer switch must close onto the fault current under the same conditions used in the withstand test
  - The same set of contacts are used for both tests: withstand and closing
Short-Circuit WCR Passing Criteria

- Ability to operate the switch and close to the opposite source
- No breakage of switch base or any other internal parts
- Door must stay secure
- Cables stay connected to lugs without insulation damage
- No continuity between the normal and alternate source terminals
- Pass a dielectric voltage-withstand test

Safety!
Concept Check

Which of the following statements is true?
   a) Transfer switches have an AIC rating
   b) Transfer switches interrupt fault current
   c) Transfer switches have a WCR rating
   d) Both a) AND c)
Concept Check

Which of the following statements is true?

a) Transfer switches have an AIC rating
b) Transfer switches interrupt fault current
c) Transfer switches have a WCR rating
d) Both a) AND c)
Applying The Duration Rating

Short-Circuit Withstand/Closing Ratings

<table>
<thead>
<tr>
<th>Circuit Breaker Time Duration Listing</th>
</tr>
</thead>
<tbody>
<tr>
<td>When protected by a circuit breaker, this transfer switch is suitable for use in a circuit capable of delivering the short circuit current for the maximum time duration and voltage listed below.</td>
</tr>
<tr>
<td>The circuit breaker must include an instantaneous trip response and shall not include a short-time trip response.</td>
</tr>
<tr>
<td>The maximum clearing time of the instantaneous trip response must be equal to or less than the time duration shown for the listed short-circuit current.</td>
</tr>
<tr>
<td>This transfer switch does not include short-time current ratings.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short Circuit Current RMS Symmetrical Amperes</th>
<th>Short Circuit AC Voltage</th>
<th>Time Duration (Maximum Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50000</td>
<td>480</td>
<td>0.050</td>
</tr>
<tr>
<td>42000</td>
<td>600</td>
<td>0.050</td>
</tr>
</tbody>
</table>

- Use a generic UL 489 breaker that clears the fault current within the time specified on the label.
Typical Thermal-Magnetic Breaker Time-Current Curve

- Instantaneous trip setting:
  - Indicates the multiple of the full load rating at which the circuit breaker will open as quickly as possible with no intentional delay

Breakers must include instantaneous trip response
Applying The OCPD Ratings

- Specific OCPD:
  - Fuse
  - Circuit breaker
- The same transfer switch has different short-circuit withstand/closing ratings

### Short-Circuit Withstand/Closing Ratings

**Specific Fuse Manufacturer and Type Listing**

When protected by a fuse of the specific fuse class and up to the fuse amperes listed below, this transfer switch is suitable for use on a circuit capable of delivering up to the short circuit current and voltage listed below.

<table>
<thead>
<tr>
<th>Short-Circuit Current (RMS Symmetrical Amperes)</th>
<th>Short Circuit (AC Voltage)</th>
<th>Fuse Class</th>
<th>Maximum Fuse Amperes</th>
</tr>
</thead>
<tbody>
<tr>
<td>200000</td>
<td>600</td>
<td>L</td>
<td>2000</td>
</tr>
<tr>
<td>200000</td>
<td>600</td>
<td>T</td>
<td>1200</td>
</tr>
<tr>
<td>200000</td>
<td>600</td>
<td>J, RK1, RK5</td>
<td>600</td>
</tr>
</tbody>
</table>

**GE**

<table>
<thead>
<tr>
<th>Type</th>
<th>Interrupting Rating at 240 VAC</th>
<th>480 VAC</th>
<th>600 VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKRU 1200L max</td>
<td>200000</td>
<td>200000</td>
<td>200000</td>
</tr>
<tr>
<td>AKU 1200L max</td>
<td>200000</td>
<td>200000</td>
<td>200000</td>
</tr>
</tbody>
</table>

**Siemens**

<table>
<thead>
<tr>
<th>Type</th>
<th>Interrupting Rating at 240 VAC</th>
<th>480 VAC</th>
<th>600 VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD6, CN6</td>
<td>200000</td>
<td>100000</td>
<td>65000</td>
</tr>
<tr>
<td>CPD6</td>
<td>200000</td>
<td>85000</td>
<td>65000</td>
</tr>
<tr>
<td>SCLD6</td>
<td>200000</td>
<td>150000</td>
<td>100000</td>
</tr>
<tr>
<td>SCMD6, SCN6</td>
<td>200000</td>
<td>100000</td>
<td>65000</td>
</tr>
</tbody>
</table>

**Square D**

<table>
<thead>
<tr>
<th>Type</th>
<th>Interrupting Rating at 240 VAC</th>
<th>480 VAC</th>
<th>600 VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSL</td>
<td>200000</td>
<td>200000</td>
<td>200000</td>
</tr>
<tr>
<td>LD</td>
<td>25000</td>
<td>18000</td>
<td>14000</td>
</tr>
<tr>
<td>LG</td>
<td>65000</td>
<td>35000</td>
<td>18000</td>
</tr>
<tr>
<td>LJ</td>
<td>100000</td>
<td>65000</td>
<td>25000</td>
</tr>
<tr>
<td>LL</td>
<td>125000</td>
<td>100000</td>
<td>50000</td>
</tr>
<tr>
<td>LR</td>
<td>200000</td>
<td>200000</td>
<td>100000</td>
</tr>
</tbody>
</table>

Voltage: 600VAC
AFC: 200000A

AFC: Available Fault Current
Time Duration Vs. OCPD

- Which rating should be applied?
  - It depends!
- UL 1008 allows the manufacturer to test and list the transfer switch to both:
  - Time Duration
  - Specific OCPD
- The different ratings provide the designer more flexibility to select the appropriate rating depending on the available fault current without the need to apply a larger size transfer switch.
Applying Specific Time & OCPD Ratings

- Determine the available fault current from the short-circuit analysis
- Select transfer switches with appropriate short-circuit ratings
  - Note that transfer switches must be rated for the available fault current at their line side terminals and protected by an OCPD selected appropriately
- Select appropriate protections
  - Bus 1 and Bus 2: specific OCPD rating is applied
  - Bus 3: specific duration rating is applied (Generic UL 489 circuit breaker)
What Is The "Any Breaker" Rating?

- The term "Any Breaker" is another way to state the Time Duration rating.
- UL 489 requires Molded Case Circuit Breakers (MCCB):
  - Above 400 amps to clear a fault in no more than 0.050s
  - 400 amps and below to clear a fault in no more than 0.025s
- "Any Breaker" is not a UL 1008 rating.

<table>
<thead>
<tr>
<th>Short-Circuit Withstand/Closing Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Breaker Time Duration Listing</td>
</tr>
<tr>
<td>When protected by a circuit breaker, this transfer switch is suitable for use in a circuit capable of delivering the short circuit current for the maximum time duration and voltage listed below.</td>
</tr>
<tr>
<td>The circuit breaker must include an instantaneous trip response and shall not include a short-time trip response.</td>
</tr>
<tr>
<td>The maximum clearing time of the instantaneous trip response must be equal to or less than the time duration shown for the listed short-circuit current.</td>
</tr>
<tr>
<td>This transfer switch does not include short-time current ratings.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short Circuit Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Symmetrical Amperes</td>
</tr>
<tr>
<td>50000</td>
</tr>
<tr>
<td>42000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short Circuit AC Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>480</td>
</tr>
<tr>
<td>600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Duration (Maximum Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050</td>
</tr>
<tr>
<td>0.050</td>
</tr>
</tbody>
</table>

- Voltage: 480VAC
- AFC: 50000A

AFC: Available Fault Current
Recommended Spec Language

- Should allow the transfer switch supplier to meet the short-circuit requirement with either a specific duration or a specific OCPD
- AIA MasterSpec® provides objective specification language:
  - "Tested Fault-Current Closing and Short-Circuit Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL1008."
Concept Check

What short circuit rating does UL1008 require?

a) WCR based on time duration
b) WCR based on a specific overcurrent device
c) Either a) OR b)
d) Both a) AND b)
Concept Check

What short circuit rating does UL1008 require?

a) WCR based on time duration
b) WCR based on a specific overcurrent device

- either a) OR b)

c) Either a) OR b)
d) Both a) AND b)
UL 1008 Testing

- UL 1008 specifies stringent testing requirements
  - Temperature rise test
  - Dielectric voltage-withstand test
  - Overload test
  - Contact opening test
  - Endurance test
    - Short-circuit test
    - Dielectric voltage-withstand test (following short-circuit withstand/closing test)
  - Short-time current test (optional)
Typical LSIG Breaker Time-Current Curve

- Short-Time pickup and delay:
  - Determines the amount of current the breaker will carry for a short period of time, allowing downstream protective devices to clear short-circuits without tripping the upstream device.
Short-Time Withstand/Closing Rating

- It is a Time Duration short-circuit WCR test
- Durations are set by the manufacturer. For example: 0.50s
- Transfer switch must pass the same criteria outlined before:
  - Ability to operate the switch and close to the opposite source
  - No breakage of switch base or any other internal parts
  - Door must stay secure
  - Cables stay connected to lugs without insulation damage
  - No continuity between the normal and alternate source terminals
  - Pass a dielectric voltage-withstand test
  - **Pass a temp-rise test**
- Short-Time demonstrates that the transfer switch can still carry rated current

Safety & Performance!
Applying The Short-Time Rating

<table>
<thead>
<tr>
<th>Voltage: 480VAC</th>
<th>AFC: 42000A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakers can have a short-time response</td>
<td>Short-Time rating allows for selective coordination</td>
</tr>
<tr>
<td>AFC: Available Fault Current</td>
<td></td>
</tr>
</tbody>
</table>

### Circuit Breaker and Short-Time Current Ratings

When protected by a circuit breaker, this transfer switch is suitable for use in a circuit capable of delivering the short-circuit current for the maximum time duration and voltage listed below.

The circuit breaker must include an instantaneous trip response unless the available short-circuit current is less than or equal to the short-time rating of the transfer switch and the circuit breaker includes a short-time response.

The maximum clearing time of the instantaneous trip response must be equal to or less than the time duration shown for the listed short-circuit current.

<table>
<thead>
<tr>
<th>Short-Circuit Current</th>
<th>Short Circuit AC Voltage</th>
<th>Time Duration (Maximum Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Symmetrical Amperes</td>
<td>65000</td>
<td>600</td>
</tr>
<tr>
<td>Short-Time Current</td>
<td>RMS Symmetrical Amperes</td>
<td>42000</td>
</tr>
</tbody>
</table>

When protected by a circuit breaker with a short-time trip response, the short-time response of the circuit breaker must be coordinated with the short-time current rating of the transfer switch as listed below.
Transfer Switch Application Example

Figure-1, UL 891 Switchboard

- Breaker has instantaneous trip response
  - AFC: 65,000A

- Short-Circuit WCR:
  - 65,000A @600 VAC for 0.05 seconds

- In Figure-1, the transfer switch is fed by a UL 891 switchboard
  - The circuit breaker must include an instantaneous trip response
  - Circuit breaker must trip in 0.05s or faster

Figure-2 UL 1558 Switchgear

- Breaker has short-time trip response.
  - AFC: 42,000A

- Short-time WCR:
  - 42,000A @600 VAC for 0.5 seconds

- In Figure-2, the transfer switch is fed by a UL 1558 switchgear
  - The transfer switch must have a short-time rating
  - The short-time response of the circuit breaker must be coordinated with short-time current rating of the transfer switch
Course Summary

Understanding and Applying UL 1008 Transfer Switch Withstand and Closing Rating (WCR)

- Discuss the UL 1008 requirements for transfer switch withstand and closing ratings
- Explain the required UL 1008 withstand and closing rating which can be time-based or specific overcurrent protection device based and how that can impact the transfer switch selection
- Describe the optional UL 1008 short-time rating and review how and where it can be applied

Conclusions:

- Transfer switches have several short-circuit WCR based on durations and specific OCPD
- Specifications should require the transfer switch short-circuit WCR be coordinated with the OCPD at the fault current available on the line side of the transfer switch
- Short-time rating is a short-circuit withstand and closing rating that is duration based
- Specifying a transfer switch with a short-circuit WCR is sufficient when it is fed by a UL891 distribution board
Additional Resources

Cummins White Papers
• UL 1008 Withstand and Close on Ratings
• Guidelines for ATS Selection: How to Choose the Right Transfer Solution for Your Power Application

Cummins On-Demand Webinars
• Transfer Switches Made Easy: A Step-by-Step Guide for Selecting the Right Transfer Switch for your System
• Transfer Switch Operation and Application
Q&A

Type your questions, comments, feedback in the WebEx Q&A box. We will get to as many questions as we can. We will publish consolidated FAQ along with presentation and webinar recording on powersuite.cummins.com

Your local Cummins contacts:

- Western Canada: Ian Lindquist (ian.Lindquist@cummins.com), Western Canada Region
- Eastern Canada: Gianluca Ianiro (gianluca.ianiro@cummins.com), Eastern Canada Region
- AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- CO, MT, ND, UT, WY: Chris Scott (christopher.l.scott@cummins.com), Rocky Mountain Region
- Northern IL, IA: John Kilinskis (john.a.kilinskis@cummins.com), Central Region
- UP of MI, MN, East ND, WI: Michael Munson (michael.s.munson@cummins.com), Central Region
- NE, SD, West MO, KS: Earnest Glaser (earnest.a.glasier@cummins.com), Central Region
- South IL, East MO: Jeff Yates (jeffrey.yates@cummins.com), Central Region
- TX, OK, AR, LA, MS, AL, Western TN: Scott Thomas (m.scott.thomas@cummins.com), Gulf Region
- FL, GA, NC, SC, Eastern TN: Robert Kelly (robert.kelly@cummins.com), South Region
- NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com), East Region
- CA, HI: Brian E Pumphrey (brian.pumphrey@cummins.com), Pacific Region
- For other states and territories, email powergenchannel@cummins.com or visit http://power.cummins.com/sales-service-locator
Closing

Watch out for a follow-up email including:
  • A Link to webinar recording and presentation
  • A PDH Certificate

Visit powersuite.cummins.com for:
  • PowerHour webinar recording, presentation and FAQ archive
  • Other Cummins Continuing Education programs
  • Sizing and specification development tools

Upcoming PowerHour Webinars:
  • March – Generator Set Sizing Software: Evaluating Transient Performance and Motor Loads
  • April – Using Fuel Cells to Address Energy Growth and Sustainability Challenges in Data Centers
  • April – Case Study Analysis: Gaseous-Fueled Applications

Please contact Mohammed Gulam if you have any questions related to the PowerHour webinar (mohammed.gulam@cummins.com)