Developing Performance Based Generator Set and System Specifications

Thursday May 12 1:00 CDT / 2:00 EDT
(1PDH issued by Cummins)
Welcome!

PowerHour is designed to help our engineer partners to…

- Keep up to date on products, technology, and codes and standards development
- Interact with Cummins experts and gain access to ongoing technical support
- Participate at your convenience, live or on-demand
- Earn PDH

Technical tips:

- Audio is available through teleconference, or your computer (don’t forget to unmute)
- You are in “listen only” mode throughout the event
- Use the WebEx Q&A Panel to submit questions, comments, and feedback throughout the event. We will provide sufficient Q&A time after presentation
- If you lose audio, get disconnected, or experience a poor connection, please disconnect and reconnect
- Report technical issues using the WebEx Q&A Panel, or email powergenchannel@cummins.com

PowerHour Experts you trust. Excellence you count on.
Meet your panelists

Cummins presenters:
Mike Sanford
Group Leader, North America and Caribbean Application Engineering

Hassan Obeid
Technical Specialist, Application Engineering

Cummins facilitator:
Tom Bakritzes, Global Sales Training Manager

Your local Cummins contacts:
- IL: John Kilinskis (john.kilinskis@cummins.com), Cummins Sales and Service, Central region
- TX: Scott Thomas (m.scott.thomas@cummins.com), Cummins Sales and Service, Gulf region
- IN, KY, OH, TN, WV: Tom Stadulis (thomas.stadulis@cummins.com), Cummins Sales and Service, East region
- For other regions, find your local distributors at http://power.cummins.com/sales-service-locator, or email: powergenchannel@cummins.com
Course Objectives

Participants will be able to:

- Recognize performance-based requirements for generator set, transfer switch and switchgear specifications.
- Identify common specification pitfalls and provide performance-based alternatives.
- Recognize current technology trends that impact the power generation industry and learn how they can be applied to existing specifications.
- Discuss the benefits of specification generation tools and how they can improve efficiency by specifying competitive and thorough system requirements.
What is a Performance-based Spec?

- Driven by a functional requirement
 - Why is it needed?
- Incorporates technology relevant in the current market
- Requires an understanding of underlying principles
- Improves system efficiency and reliability by optimizing equipment for specific applications
- Inclusive of “functional equivalents”
Generator Set
Specification Items
Diesel Engine Requirement

Each engine shall be of the full diesel compression ignition, liquid cooled type, 16 cylinder, four cycle, 1800 rpm and shall utilize No.2 diesel fuel. The engine shall be turbo-charged, after-cooled and equipped with crosshead malleable iron pistons, replaceable cylinder liners, counter balanced forged steel crankshaft, forged steel connecting rods, replaceable main and connecting rod bearings…
Diesel Engine Requirement

- Specificity of content may limit the design choices for product
- Requiring detail on such a section may distract from key performance drivers
- By including this text in the spec, if a new technology is released, it may limit the potential of adopting a better technology
- Suggest including the functional requirements (fuel type, cooling type, etc.)

✓ Fuel: ASTM D975 #2 Diesel Fuel
The genset shall be provided with heavy duty, high capacity fuel pre-filter/water separators as manufactured by Brand X. Filters shall be Model Y, and provide two stages of filtration: 30 micron primary and 7 micron secondary.
Fuel Filtration

- Specifying a brand of filters limits product options (a different brand may provide something better)
- The filter micron requirement should be removed, filtration requirements are not common across all engine manufacturers.

✓ Fuel oil filters shall be provided per engine manufacturer’s requirements.
✓ Filter and Strainer: Provided by the engine manufacturer of record to provide adequate filtration for the prime mover to be used.
Sound Performance

Housing should provide sound reduction capabilities up to Critical Grade Silencing.

Exhaust silencer(s) shall be critical grade.

- Does not specify overall sound pressure level at a given distance (property line)
- May not comply with local noise ordinances

✓ Sound pressure level measured at the property line (23 feet from the generator set), shall not exceed 85 dB(A).
Sound Performance

Exhaust 94 dB(A) → Hospital-Grade Silencer 30 dB(A) Reduction → Exhaust 64 dB(A)

Exhaust 64 dB(A) → Fan 86 dB(A) → Engine 80 dB(A) → 87 dB(A)

PowerHour Experts you trust. Excellence you count on.
Fuel Coolers

Engine generator shall be equipped with a fuel oil cooler. Fuel return temperature must not exceed 38°C.

- Fuel oil coolers are application specific
- Maintaining the returned fuel temperature at an excessively low value may not be achievable

✓ A fuel oil cooler shall be provided per the application as required by the engine manufacturer.
Design Calculations

Calculations provided in the submittal package to include:

- Calculations of the engine and generator output power capability, including efficiency and parasitic load data.
- Calculations for the capacity of each day tank, including allowances for recirculated fuel, usable tank capacity, and duration of fuel supply.
Design Calculations

- Design calculations are considered proprietary data in most organizations.
- Test data of actual output based on prototype and production units is a much more accurate and relevant piece of information.
 - Generator set manufacturer shall provide a certified summary of prototype-unit test report.
 - Generator set manufacturer shall provide a list of factory tests to be performed on units prior to shipment.
 - Generator set manufacturer shall provide a report of exhaust emissions and compliance statement certifying compliance with applicable regulations.
Turbocharger Loads

Manufacturer shall submit turbocharger load bearing calculations for the proposed engine-generator set.

- The intent of this section is to determine the weight which the turbo can hold, not the electrical or mechanical load of the turbo impeller/housing.
Turbocharger Loads

Turbocharger Exhaust Outlet Elbow / Flange
Turbocharger Loads

- Turbochargers are not built to hold weight, the flange is provided as a connection point only.

- ✔ Exhaust system shall be installed per engine manufacturer’s requirements.
Transient Performance Expectations

The engine-generator set shall respond to maximum step load changes such that the maximum voltage and frequency deviations from bandwidth are not exceeded.

Max Step Load Increase 100 % of Service Load at 0.8 PF

Maximum Voltage Deviation with Step Load Increase:
 10 % of rated voltage
Maximum Frequency Deviation with Step Load Increase:
 5 % of rated frequency
Transient Performance Expectations

- 10% voltage dip on 100% step load of nameplate is virtually impossible
- 10% voltage dip on 100% step load of facility requirement is possible, but requires a significantly oversized genset
- For loads which are sensitive to voltage dip, apply them in steps and later in the loading sequence

✓ Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds. On application of a 100% load step the generator set shall recover to stable voltage within 10 seconds.
ISO Transient Performance

Engine-generator shall be capable of transient performance per ISO 8528 class G3.

- Common misinterpretation of this:

 A. **Performance Class**: Diesel generator set is to be class G3 (15 percent voltage drop / free drop at 100 percent loading) to ISO 8528-1.

- ISO 8528 lists an acceptable voltage and frequency surge based on 100% load **rejection** and an acceptable voltage and frequency drop based on a calculated load percentage.
Six copies of the operation manual (approved prior to commencing onsite tests) in 8-1/2 by 11 inch binders having a minimum of 3 rings from which material may readily be removed and replaced, including a separate section for each system or subsystem. Sections shall be separated by heavy plastic dividers with tabs which identify the material in the section. Drawings shall be folded blue lines, with the title block visible, and placed in 8-1/2 by 11 inch plastic pockets with reinforced holes. One full size reproducible mylar of each drawing shall accompany the booklets. Mylars shall be rolled and placed in a heavy cardboard tube with threaded caps on each end. The manual shall include: step-by-step procedures for system startup, operation, and shutdown; drawings, diagrams, and single-line schematics to illustrate and define the electrical, mechanical, and hydraulic systems together with the related alarms, and safety systems; the manufacturer’s name, model number, and description of equipment in the system. The instructions shall include procedures for interface and interaction with related systems to include automatic transfer switches, fire alarm/suppression systems, load shedding systems, uninterruptible power supplies. Each booklet shall include a CDROM containing an ASCII file of the procedures.
Common Specification References
Performance Spec Values

- Safety and protection:
 - UL 2200 listed generator set, CSA, CE

- Emergency system usage:
 - NFPA 110 Level 1, Type 10

- Emissions Levels:
 - Emergency Stationary, Stationary Non-emergency, or Non-road mobile

- Seismic
 - OSHPD Pre-certification
Performance Spec Values

- Transient Performance Class:
 - ISO 8528 G2 or G3 (depending on load types)
 - Voltage/Frequency dip requirements of potential facility loads

- Alternator specs:
 - Temperature rise: 80°C, 105°C, 125°C – depending on performance requirements
 - Excitation type: PMG or AUX for non-linear loads or starting large motors (typically > 35 kW sets)
 - Subtransient reactance: Sensitive loads (12%) Less sensitive loads (15%)
System/Switchgear Specifications
Control Circuit Board

The ATS control logic shall be provided on multi-layer printed circuit boards

- How would a single-layer verses a multi-layer impact the performance of the ATS?
- Almost all circuit boards are multi-layered

✓ Possibly specify radio frequency emission compliance, surge withstand rating and operating temperature
Synchronizer and Load Control

Include in the switchgear a Woodward MSLC and DSLC:
All paralleling control components shall be compatible with each proposed generator manufacturer. *Digital paralleling controls as part of the generator controller are not acceptable.*

- What is the technical justification for not allowing the paralleling control to be part of the generator set?
- Relying on a master for paralleling introduces a single point of failure
Synchronizer and Load Control

✓ Provide a paralleling control panel for each generator set in the emergency/standby power system. Each paralleling control shall be independent and autonomous, requiring no interaction with other controls for synchronizing.
Multi-function Relays

Provide each generator circuit breaker with a multi-function generator relay in a drawout case to provide protection, control, metering and monitoring of the generator. Locate one 9600 baud RS232 port The relay shall have Windows® based PC software to enable setpoint programming file storage, on-line help, and real time display of status and measured data. General Electric Multilin SR489 series

- This portion specifically calls out a brand of relay, but does not address the functions that the relay should carry
Multi-function Relays

✓ The generator controller shall have the following protection:

1. High AC voltage shutdown
2. Low AC voltage shutdown
3. Over/Under frequency
4. Reverse power
5. Overcurrent
6. Synch check
7. ...
Synchronizing Panel

Provide Synchronizing panel with:
1. One bus AC voltmeter, Crompton digital analog type
2. One synchroscope
3. Two synchronizing lamps

- Why not take advantage of the modern digital paralleling technology? Manual operation needed?

✓ The generator set operator panel shall provide manual and automatic functions for control of the generator set
Metering

Provide digital/analog ammeter suitable for the display of all phases (1% accuracy) with ammeter switch for all generators

- Are the analog meters necessary?

- The generator and Master HMI should display:
 - Line to line voltage (all three phases simultaneously)
 - Line to Neutral voltage (all three phases simultaneously)
 - Alternator frequency
 - …
Paralleling Time

All generators shall be paralleled and on-line within 10 seconds following the utility outage

- May be possible in some situations
- Size the smallest generator set to handle the critical loads requiring a 10 second compliance time

✓ Critical loads should be online within 10 seconds
Specification Building Tool

- **GenSpec**
 - Generators
 - Automatic Transfer Switches
 - Switchgear
Summary

- Remember to write specifications based on functions and performance
- Listing brand-specific components can limit design options and increase cost
- Assess how realistic and relevant the specified performance metrics are
- Be sure to keep specifications current with modern technology
Q&A

- Type your questions, comments, feedback in the WebEx Q&A box. We will get to as many questions as we can.
- We will publish consolidated FAQ along with presentation and webinar recording on powersuite.cummins.com.
Q&A

- Type your questions, comments, feedback in the **WebEx Q&A box**. We will get to as many questions as we can.

- We will publish consolidated FAQ along with presentation and webinar recording on powersuite.cummins.com.

Your local Cummins contacts:

- AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- CO, MT, ND, UT, WY: Joe Pekarek (joe.a.pekarek@cummins.com), Rocky Mountain Region
- Northern IL, IA: John Kilinski (john.a.kilinski@cummins.com), Central Region
- UP of MI, MN, East ND, WI: Michael Munson (michael.s.munson@cummins.com), Central Region
- NB, SD, West MO, KS: Earnest Glaser (earnest.a.glaser@cummins.com), Central Region
- South IL, East MO: Jeff Yates (Jeffery.yates@cummins.com), Central Region
- TX: Scott Thomas (m.scott.thomas@cummins.com), Gulf Region
- FL, GA, SC, NC and Eastern TN: Robert Kelly (robert.kelly@cummins.com), South Region
- NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com), East Region
- CA, HI: Brian E Pumphrey (brian.Pumphrey@cummins.com)
- WA, OR, AK: Tom Tomlinson (tom.tomlinson@cummins.com)
- For other states and territories, email powergenchannel@cummins.com or visit http://power.cummins.com/sales-service-locator
Closing

- Watch out for a follow-up email including
 - A Link to webinar recording and presentation
 - A PDH Certificate

- Visit powersuite.cummins.com for
 - PowerHour webinar recording, presentation and FAQ archive
 - Other Cummins Continuing Education programs
 - Sizing and spec development tool

- Please contact Mohammed Gulam if you have any questions related to the PowerHour webinar (mohammed.gulam@cummins.com)