シェア7割。香港の2階建てバスを支えるカミンズ製エンジン

Hong Kong Diesel Bus

香港の過酷な運行環境にも対応する高性能なエンジン


貿易と金融の中心地であり、観光地としても人気を集める街、香港。2階建てバス(ダブルデッカーバス)が走る賑やかな街をイメージされる方も多いでしょう。そのイメージ通り、街の中には路線が網の目のように張り巡らされ、毎日400万人以上もの人々(2019年時点)がバスを利用しています。


私たちは長年、香港の交通網を支えるバスにエンジンを提供してきました。2020年にはL9エンジンを載せた「ADL Enviro500」が新たに導入され、香港を走る3軸2階建てバスの約7割にあたる4500台がカミンズ製エンジンとなりました。


香港では、湿度の高い気候の中、乗客を満載して急勾配の道を走ることが求められます。そのため、パワーと安定性はバスエンジン選びの重要な要素となります。L9エンジンはクラス最高の出力性能を備えており、非常にパワフルなのが特徴。可変容量ターボチャージャー(VGT)を備えているため加速性にも優れ、静かでスムーズな運行が可能です。さらに、街中や郊外で使用された場合は1日20時間の稼働に、高速バスとして使用された場合は年間20万kmもの走行に耐えられることが証明されています。


また、香港で運行するバスは、EUによる大型トラックやバス向けの排ガス規制「Euro VI」の基準を満たす必要があります。これに対応するため、カミンズはL9エンジンに「選択触媒還元脱硝装置(SCR)」および「ディーゼル微粒子捕集フィルター(DPF)」を統合した排出ガス後処理システムを搭載。排出ガスの削減にも成功し、香港の厳しい運行環境に対応するエンジンを実現させました。
 


香港では、湿度の高い気候の中、乗客を満載して急勾配の道を走ることが求められます。そのため、パワーと安定性はバスエンジン選びの重要な要素となります。L9エンジンはクラス最高の出力性能を備えており、非常にパワフルなのが特徴。可変容量ターボチャージャー(VGT)を備えているため加速性にも優れ、静かでスムーズな運行が可能です。さらに、街中や郊外で使用された場合は1日20時間の稼働に、高速バスとして使用された場合は年間20万kmもの走行に耐えられることが証明されています。


また、香港で運行するバスは、EUによる大型トラックやバス向けの排ガス規制「Euro VI」の基準を満たす必要があります。これに対応するため、カミンズはL9エンジンに「選択触媒還元脱硝装置(SCR)」および「ディーゼル微粒子捕集フィルター(DPF)」を統合した排出ガス後処理システムを搭載。排出ガスの削減にも成功し、香港の厳しい運行環境に対応するエンジンを実現させました。
 


高性能なエンジンで交通インフラを支える


カミンズは、2階建てバスのほか一般的な乗合バスやスクールバス、電動バスなど、世界中で利用される様々なバスに向けたエンジンを開発しています。幅広いエンジンラインアップをそろえているのが、当社の大きな強みです。


近年はバスのゼロエミッション化にも力を入れて取り組んでおり、2019年にはスクールバスメーカーのBlue Bird社と共同で、電動スクールバス事業をスタート。カミンズの電気駆動システムで走る100台以上の電動スクールバスが、アメリカ全土で活躍しています。


バスの使命は、お客様を安全に目的地まで送り届けることだけではありません。安定して稼働し続けることも、交通インフラとしての大切な役割です。カミンズは人々の暮らしを支えるエナジーソリューション企業として、今後も、高性能かつ環境にやさしいバス用エンジンの開発に向けて努力を続けていきます。


※カミンズが提供するバス用エンジンのラインアップについては、こちらのページをご覧ください。

A closer look at Columbus Engine Plant’s sustainability measures

Recycle

Over the years, the Columbus Engine Plant (CEP) has become home to the manufacturing, research and development of multiple Cummins Inc products. From battery packs and electric driveline components to heavy duty machining of heads and blocks for the X15 engine, the plant tackles it all. It’s become home to the Light Duty Tech Center (LDTC) for research and development for light, medium and heavy-duty engines, Cummins Inc Turbo Technologies, and the Historic Restoration Center (HRC).

With so many different streams of production, when it comes to sustainability, the Columbus Engine Plant aims for continuous improvement. Dave Wehrkamp, the plant’s former Health, Safety and Environmental (HSE) leader, says the plant is always looking for ways to improve its sustainability efforts by asking questions like, “What items in the facility are top energy users?” or “How can we reduce the impact of machinery while maintaining efficiency?”

Leveraging community partnerships for sustainbility

One way the plant has focused on its environmental impact is through its partnership with the Indiana Department of Environmental Management (IDEM). The program aims to protect human health and the environment while implementing federal and state regulations. Columbus Engine Plant is part of IDEM’s Partners for Pollution Prevention and Environmental Stewardship programs.

The Partners for Pollution Prevention Program is a forum where Indiana businesses, nonprofits and government agencies work together to establish pollution prevention policies. Through the program, the plant learns valuable sustainability and pollution reduction strategies, shares insights and stays informed on the latest pollution reduction technologies. As part of the Pollution Prevention Program, Columbus Engine Plant:

•    Helps employees understand their role in executing pollution prevention goals
•    Incorporates pollution prevention planning when creating new products or services
•    Creates an outreach program for promoting and supporting pollution prevention efforts
•    Makes waste reduction and pollution prevention resources available to members of the community

Columbus Engine Plant is also one of 51 businesses in IDEM’s Environmental Stewardship Program. This program recognized Indiana businesses that go above and beyond current environmental regulations. Businesses that qualify for the program are those that consistently look for ways to reduce waste, improve efficiency and shrink their environmental impact.

Marching towards a sustainable future with Planet 2050

Columbus Engine Plant has initiated a variety of sustainability efforts to complement these external programs, as well as the key goals included in Cummins’ Planet 2050 strategy. Planet 2050 is a long-term strategy aimed at addressing climate change and air emissions, using natural resources sustainably and forming partnerships to ensure Cummins leaves a near-zero environmental footprint in its communities.

Wehrkamp says one of the ways Columbus Engine Plant reduces its environmental impact is through “just-do-it” projects, including lowering the shop air pressure from 105psi to 96psi to installing LED lights with motion and sensors to decrease energy use. These small changes can make a big impact over time.

The plant also focuses on the three R’s of waste management: reduce, reuse and recycle. According to Wehrkamp, the most important “R” for sustainable manufacturing is to reduce. Tons of waste accumulate from the packaging of incoming parts. Wehrkamp says the plant is always looking for ways to reduce packaging while upholding the safety of manufacturing parts. The plan reuses wood from its packaging by grinding it into mulch for landscaping or burning it into fuel. 

For more information on how Cummins partners for progress on climate change, click here. Learn more about Planet 2050 and how Cummins is working toward its long-term environmental goals. 
 

Advantages of Diesel Engines

For a World that is always on

Advanced diesel engines are some of the most fuel and energy-efficient options in the market, but those are just the beginning of their advantages. Some of their advantages are emotional. For a hundred years, people have been firing up a diesel engine to start their work day. But the environmental impact of that economy is now under increasing regulations. Innovative aftertreatment systems and cutting-edge engineering allow owners to operate with net zero emissions and supplement operations with biodiesel blends. This addresses diesel’s main disadvantage—its environmental impact, and allows this fuel to be part of powering the future. 

Let’s review the four high-level advantages of modern diesel engines.

Advantage 1: Diesel Fuel Economy

Diesel vehicles can travel 20% to 35% farther on a single gallon of fuel than similarly-sized gasoline vehicles. Diesel fuel economy comparison with biodiesel also reveals that low-sulfur diesel can be the superior option. For example, B100 biodiesel in particular is around 7% less efficient than diesel, according to the US Department of Energy Alternative Fuels Data Center. However, B20 biodiesel is roughly equivalent to regular diesel in its potential for fuel efficiency.

What is the fuel efficiency of diesel? One limited comparison of passenger vehicles by The Motley Fool showed diesel is 29% more efficient on the highway and 24% more efficient in the city. For commercial vehicles, diesel is the best option available in areas without natural gas or hydrogen infrastructure, and even in those areas, diesel may still be preferred.

Advantage 2: Diesel Engines Require Less Maintenance

If you’re wondering “do diesel engines have more problems,” the answer is that they have less. There are fewer overall parts in a diesel engine than a gasoline engine, meaning less components to break or need repair. As one example, diesel engines do not have spark plugs. This leaves less room for electrical failures and reduces the need for maintenance and upkeep by the owner. Less waste is produced and cost-savings are achieved!

What is the main problem with diesel engines? By many accounts, overheating. Diesel engines are powerful and get put to hard use in all environmental conditions. But with just a little regular maintenance, Cummins Inc. advanced diesel engines are up for any challenge.

Advantage 3: Diesel Powers High Torque

What are the performance benefits of a diesel engine? Diesel engines deliver better acceleration, towing, and hauling potential than their gasoline counterparts. This is because within a diesel engine, the piston rises to the top of the cylinder, while in a gasoline engine it stops short. Diesel engines compress more air faster, delivering more power to get work done. Features like a turbocharger allow extra air to enter a diesel engine so it can deliver on horsepower as well. Cummins is focused on turbochargers for medium and heavy-duty diesel engines to improve efficiency and achieve cost savings. 

Advantage 4: Diesel Engines Have a Long Lifespan

Diesel engines are built tough to handle high compression and hard work. That means they last a long time as well. At Cummins, we’re committed to making our engines last with less upkeep required by owners. Simplified aftertreatment systems, longer oil-drain intervals and maintenance-free filters are just some of the features in our diesel engine lineup. These innovations mean better on-going financials while carrying on the essential business of moving packages and people from where they are to where they’re headed.

Cummins Delivers Powerful, Dependable, Responsible Diesel

Is diesel better for the economy? From many perspectives, yes. Diesel is a familiar and ingrained technology on farms, worksites, roadways, and railways across the world. As all these economic sectors and others take action to meet emissions regulations, diesel does not have to leave the equation. Cummins aftertreatment systems can convert diesel emissions into nitrogen gas and water vapor, allowing diesel to maintain its place powering life without concern about environmental impact and compliance.

In 1919, Clessie Lyle Cummins founded Cummins to deliver on his vision of an improved diesel engine. Since then, we have never stopped pushing the boundaries of possibility, from innovating clean diesel to alternative fuels like natural gas and hydrogen

The advantages of diesel engines are many, and Cummins wants to help you make the most of them. Learn more about the application of our engines across industries, or find a dealer location near you for service or support. 
 

Frequently asked questions about diesel engines

Semi truck on road with sunset

The topic of advanced diesel engines can quickly become overwhelmingly technical and turn a simple question into a deep-dive analysis. Our team at Cummins wants to make this and surrounding topics as digestible as possible, which is why we have put together this page of common questions we have run into surrounding advanced diesel engines. 

What is a diesel engine's lifespan?

Diesel engines are robust machines that have longer lifespans than you might expect. The lifespan of an average diesel engine is anywhere from 400,000 miles to 1,000,000 miles, while the average lifespan of a gas engine is around 200,000 miles. Why is that? Diesel engines are designed differently from petrol engines, meaning they have more room within the engine for more oil to move freely. This allows the components of the engine to run longer at optimal levels. Other key factors in the durability of diesel engines are their overall design, and their application uses compared to other engines.

How to diagnose diesel engine problems?

Diesel engine problems can significantly impact longevity. There are common diesel engine complications that you may run into during regular operation. The most accurate method of diagnosing engine trouble is to contact the engine manufacturer to get their insight on solutions. Beyond that, here are a few common diesel engine problems. 

  • Black Smoke: A common feature of the old locomotive engines, black smoke is a clear sign of a serious problem with your diesel engine. There are several causes for black smoke, like a faulty injector pump, a bad EGR valve, or something as simple as low operating temperatures. Cleaning out the air system is an excellent first step to combat this, but ultimately you should consult with a specialist.
  • Hard Starts: Colder conditions can commonly lead to hard starts for diesel engines. The weather is only a catalyst that leads to the issue of hard starting the engine. A hard start or no start can be caused by faulty glow plugs, defective battery, or a problem with the fuel system, to name a few. 
  • Contaminated Fuel: Due to its higher viscosity, diesel fuel has a higher chance of becoming contaminated. Water, soot, and other debris are common fuel contaminants. Refueling is a simple fix, but if you cannot catch this problem early enough, you will need to bring the engine to a professional to be fixed. 

These diesel engine problems and solutions are difficult to manage on your own. Any time you can identify a serious issue with the engine, it is advised to take it to a specialist or contact the manufacturer. Engines can be fixed, but only correctly by professionals. For industry trusted professional, consider taking all your diesel engine troubles to Cummins. Our engines and service are best in class.

How often should a diesel engine be serviced?

Depending on the performance of the engine, how often it needs to be serviced will vary. A safe practice would be to have a diesel engine serviced every six months. At the very least, it should be looked at once a year to make sure everything is in working order. This is not a concrete rule, as the type of diesel engine and what it is used for will have a significant impact on how often it will need to be serviced. Cummins’ service manual is a great resource that provides maintenance schedules based on product type.

One other key aspect for servicing a diesel engine is variation. For example, a long-haul truck that works for several hundred miles a day would have a different service/maintenance need than the personal car with diesel engine that would only need to be serviced once every six months.

Another example of this variation would be for mining trucks. They haul amazon loads, almost all day long, for weeks and months in very dirty environments, so their maintenance/service needs would be again very different than that of a long-haul truck or an everyday commercial car. 

Who makes the most diesel engines in the world?

We can give you a hint, you’re reading one of their blogs right now. Our very own talented team at Cummins is one of the world’s leading manufactures of diesel engines. In 2018, Cummins supplied the most Class 8 diesel engines. There were 309,701 diesel engines used in Class 8 trucks that year, and Cummins was responsible for 38.3% of them. 

What are the types of diesel engines?

Diesel engine types are most commonly designated by size. There are three types: small, medium, and large diesel engines. 

  • Small: Small diesel engines are classified as outputting at most, 288 horsepower. These are also either direct injection, in-line, four- or six-cylinder engines. Due to their relative size and power, they are most commonly found on smaller trucks or automobiles. Of the three types, this is the most common diesel engine produced. 
  • Medium: Medium diesel engines are a step up from small ones. They can produce up to 1,000 horsepower. Some V-8 and V-12 engines belong to this group. This engine type is commonly used in heavy-duty trucks. 
  • Large: At this level, we are discussing serious power. Large diesel engines are used to power trains, ships, and other large vehicles or equipment. They operate at an excess of 1,000 horsepower. 

Are modern diesel engines clean?

While diesel engines are known to pollute by emitting fumes and soot during use, they are cleaner than you may think. A positive by-product of the Environmental Protection Agency (EPA) regulations is that diesel engines are cleaner than they have ever been. Due to healthier and more efficient engines being manufactured, they could last 30 years or more. While no internal combustion engine (ICE) is operating 100% clean, the concept of clean diesel has been in the works at companies like Cummins for some time. Biodiesel is just one way in which we strive to create cleaner alternatives. Cummins, in common with all other engine manufacturers, only certifies engines to meet the prescribed EPA (or other local regulatory agency) registered fuels.

What are the disadvantages of diesel engines?

Before we detail some of the disadvantages of using diesel engines, we feel that it is important to clarify some of the benefits first. The two most glaring advantages they provide are diesel engines are more durable and reliable than petrol engines. They do not require spark plugs to ignite fuel. Diesel engines also have better fuel economy than petrol engines. With that being said, diesel engines are used in vehicles, machines, and other projects where petrol engines simply would not be able to perform the tasks.

A major glaring disadvantage of using diesel engines that most people associate with them is its environmental impact. The EPA comments that “ Emissions from diesel engines contribute to the production of ground-level ozone which damages crops, trees and other vegetation.  Also produced is acid rain, which affects soil, lakes and streams and enters the human food chain via water, produce, meat and fish.” This is why Cummins is constantly at work with new initiatives to create a cleaner future for diesel engines. 

While diesel engines are the preferred option under specific circumstances, there are still some drawbacks to using them. For one, diesel engines, on average, cost more to fuel than petrol engines. Above, we mentioned how these engines could last for more than 30 years. That means these engines will be working longer and harder than its counterparts, which will then result in costly services to keep them in good working condition. 

The advantages and disadvantages of petrol and diesel will more or less come down to the needs of the individual or organization's practical use. For large-scale operations, having large diesel engines at your disposal is necessary in most cases. In either case, working with a manufacturer like Cummins will ensure that you receive the best engine for your needs. 

Do diesel engines run on renewable diesel?

An easier way to answer this question would be to frame it as "can diesel engines run on renewable diesel?" In that case, yes. Renewable diesel is suitable for use in diesel engines. We announced compatibility with select renewable diesel fuels for our B6.7 and L9 engines. This type of fuel is an excellent move in the right direction to combat the disadvantages associated with using diesel. 

Cummins: Bringing Diesel to New Frontiers

We are always looking for ways to get the most out of products. We know that there are many options for diesel engines, but no other manufacturer is trusted more than our team at Cummins. 

Contact us today to find out all that we can provide you.

Cummins Office Building

Cummins Inc.

Cummins, a global power technology leader, is a corporation of complementary business segments that design, manufacture, distribute and service a broad portfolio of power solutions. The company’s products range from internal combustion, electric and hybrid integrated power solutions and components including filtration, aftertreatment, turbochargers, fuel systems, controls systems, air handling systems, automated transmissions, electric power generation systems, microgrid controls, batteries, electrolyzers and fuel cell products.

Safety considerations around natural gas engines and vehicles

Natural Gas Vehicle

When switching to natural gas engines, there are many different aspects to consider. Safety is an absolute priority for engine and vehicle manufacturers, distribution and transportation companies, and end-users. 

Natural gas engines are a safe technology

Natural gas engines and diesel engines have relatively similar architectures. The decades of knowledge Cummins Inc has accumulated designing internal combustion engines helps engineer safe, reliable natural gas engines. Thus, many common safety considerations are well-known and have well-documented solutions, such as the avoidance of pre-ignition events in the cylinder.

In some respects, natural gas is safer than liquid fuels. If a leak occurs inside the engine compartment, natural gas tends to dissipate at a faster rate while liquid fuels may coat engine parts or form puddles. Leaked diesel or gasoline can lead to fires, whereas natural gas is either already gone or present in concentrations so low it’s not conductive to ignition. In addition to natural gas, there are other alternative comparable fuels that have grown in popularity.

Natural Gas Vehicles keep drivers safe

Compressed natural gas (CNG) vehicles store their fuel in sturdy gas cylinders under high pressures. High storage pressures enable storage of more fuel in the same cylinder, extending the range of the vehicle. These cylinders are critical for the safety of the vehicle and are subject to stringent design standards and safety margins. Compressed Natural Gas (CNG) cylinders are typically rated to store gas at up to 3,600 psi. They are also required to feature pressure relief valves, which release some gas to reduce pressure when abnormal conditions occur. Other critical safety components include a pressure regulator and a shut off valve. A pressure regulator monitors the pressure of the natural gas reaching the engine. The main shut off valve allows isolation of the fuel system from the engine. These components are thoroughly verified and tested to ensure the safety of the vehicles incorporating them. Cummins has formed a new joint venture called Cummins Clean Fuel Technologies to provide natural gas storage tanks.

Natural gas is lighter than air and can dissipate into the atmosphere. To avoid severe damage in the tanks, most fuel delivery systems are designed robustly in case vehicle accidents take place. CNG tanks must pass acid exposure and drop tests in horizontal, vertical and 45-degree angles. They also must pass a penetration test that requires them to be shot with a rifle without resulting tank ruptures. Finally, all CNG cylinders must be tested and certified to a continuous operating temperature range of -40⁰F to 185⁰F.

It is important for natural gas fuel systems to be leak-free. Periodic inspections and maintenance are essential to avoid leakage. The gross vehicle weight rating (GVWR) determines tanks’ maintenance intervals. If the number is greater than 10,000 lbs., inspection takes place at least every 12 months. Then, if GVWR is lesser or equal to 10,000 lbs., the inspection interval is three years (36 months) or every 36,000 miles. CNG cylinders have a limited useful life of 15 to 20 years and do not requalify for use beyond their useful life. 

These are some of the many best practices listed in safety standards such as the National Fire Protection Association 52 standard. Tank manufacturers also provide instructions to prevent cylinder damage. Some of these instructions include not dragging or walking on the cylinders and protecting the valves, fittings, and piping when transporting them.

Top 5 Safety Design Elements for CNG Maintenance Facilities

CNG is mostly methane (CH4) with slight amounts of other hydrocarbons. Its lighter than air, so in the event of a release, it will rise to the ceiling of the maintenance facility and quickly dissipate rather than pooling at or near floor level like liquid fuel vapors. If concentrations of 5% - 15% by volume of natural gas encounter an ignition source, the gas may ignite, with potentially serious results. However, according to the U.S. Department of Energy, due to natural gas’s ability to rapidly dissipate, this concentration is rarely seen in practice. That said, to prevent potential safety hazards, facilities that service natural gas vehicles require specific safety measures.

1.    Ventilation must provide sufficient air flow to reduce the concentration of any released gas and at the same time evacuate gas from the structure.
2.    Paths of migration must be controlled to prevent any released gas from entering unprotected areas of the structure.
3.    Space heating must be designed in accordance with guidelines so that open flames or hot surfaces don’t provide an ignition source.
4.    Electrical wiring and equipment must be installed in such a way that they don’t provide ignition due to sparking. The equipment itself can be designed to be “explosion         proof.”
5.    Methane detection and control systems and alarms must provide defense against dangerous concentrations of natural gas by alerting personnel in the building and             disabling potential electrical ignition sources.  

Local Clean Cities coordinators are an excellent resource for fleets and facility maintenance managers with questions about safety measures, or who need help accessing their facilities. Visit cleancities.energy.gov to find a local Clean Cities coordinator.

Ultimately, using natural gas in the transport industry can be a safe fuel. This is an addition to the many advantages of using natural gas engines. Therefore, natural gas vehicles are clean, safe and reliable thanks to the use of best practices and the incorporation of smart safety features.

Never miss the latest and stay ahead. Sign up  here to receive the latest in technologies, products, industry news and more.

Puneet Singh Jhawar

Puneet Singh Jhawar

Puneet Singh Jhawar is the General Manager of the global natural gas business for Cummins Inc. In this role, he is responsible for the product vision, financial management and overall performance of the natural gas business. Over his 14-year career at Cummins, Jhawar has cultivated successful relationships with a number of Cummins’ largest customers. Jhawar has extensive global experience, with roles based in the Middle East, India, Europe and the US.

Redirecting to
cummins.com

The information you are looking for is on
cummins.com

We are launching that site for you now.

Thank you.